2013年6月25日 星期二

The AIV-HM76V0FL is built for handling rugged environments

Industrial PC, Console server, gaming platform
ACROSSER Technology, a world-leading In-Vehicle Computer designer and manufacturer, is pleased to introduce its latest In-Vehicle computer product, the AIV-HM76V0FL. The AIV-HM76V0FL is built for handling rugged environments. To showcase its high performance, we have created a small experiment to prove its durability in difficult situations.

One fascinating feature of AIV-HM76V0FL is its ability to support HDMI video output. This outstanding feature would satisfy those seeking for high-quality video outputs. AIV-HM76V0FL is an outstanding In-Vehicle solution for anything ranging from commercial to security issues. We have seen our clients using them  on digital signage display and security IP surveillance cameras. The two key factors that allow for such high-performance graphic processing are the Intel HM76 mobile chipset and FCPGA 988 socket for 3rd generation Core i mobile computer platform.

Acrosser’s latest In-Vehicle computer product, AIV-HM76V0FL should meerit a spot on your procurement list. This product can sustain a level 2G shock and received IEC 60068-2-64 (anti-vibration) and IEC 60068-2-27 (anti-shock) certifications.
Here is the actual video demonstrating the outstanding performance of the AIV-HM76V0FL. The base vibrator simulates a mobile environment, and this is exactly how it looks like inside a moving vehicle.

2013年6月18日 星期二

More SWaP-optimized the better


A portable atomic clock is just the ticket for many UAVs, and the more SWaP-optimized the better. The Chip-Scale Atomic Clock (CSAC) fits the bill with the low power draw and accurate performance inherent in its design.

 

Embedded PC, in vehicle PC, Industrial PC

Unmanned Aerial Vehicles (UAVs) began as tools for military surveillance. As their capabilities expanded, they found usage in civilian applications such as border patrols and drug interdiction, while on the military side the expanded capabilities led to missions using armed UAVs.Throughout their use, accurate clocks have been required for UAVs to carry out their missions. A principal need has been navigation; UAVs typically use a clock that has been synchronized to Global Positioning System (GPS) for very accurate timing. However, when the GPS signal is lost, the clock is used to provide a “holdover” function that integrates with a backup navigation system, usually some form of an Inertial Navigation System (INS). The clock’s holdover performance is important because, in military applications, GPS signal loss is sometimes due to intentional jamming, which can persist for long periods of time.

............


refer to
http://smallformfactors.com/articles/chip-scale-swap-design-challenges/#at_pco=cfd-1.0